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Greenhouse gas emissions resulting from
conversion of peat swamp forest to oil
palm plantation
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Conversion of tropical peat swamp forest to drainage-based agriculture alters greenhouse

gas (GHG) production, but the magnitude of these changes remains highly uncertain. Current

emissions factors for oil palm grown on drained peat do not account for temporal variation

over the plantation cycle and only consider CO2 emissions. Here, we present direct mea-

surements of GHGs emitted during the conversion from peat swamp forest to oil palm

plantation, accounting for CH4 and N2O as well as CO2. Our results demonstrate that

emissions factors for converted peat swamp forest is in the range 70–117 t CO2 eq ha−1 yr−1

(95% confidence interval, CI), with CO2 and N2O responsible for ca. 60 and ca. 40% of this

value, respectively. These GHG emissions suggest that conversion of Southeast Asian peat

swamp forest is contributing between 16.6 and 27.9% (95% CI) of combined total national

GHG emissions from Malaysia and Indonesia or 0.44 and 0.74% (95% CI) of annual global

emissions.
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Tropical peat swamp forests hold ca. 20% (105 Gt) of global
peatland Carbon (C)1–3. However, the contribution of peat
swamp forests to C storage is currently under threat from

large-scale expansion of drainage-based agriculture including oil
palm and pulp wood production on peatlands (Fig. 1)4. Draining
peatlands increases the oxygen levels in the soil, which in turn
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Fig. 1 Peatland land use and land use change. a Map of peatland use showing the three main land use classes found in peatland areas in the region:
uncultivated, oil palm and pulp plantations; and changes in area of oil palm plantation on peatland in b Peninsular Malaysia, c East Malaysia (Sarawak and
Sabah), d Kalimantan, Indonesia, e Sumatra, Indonesia and f Brunei from 1990 to 2015. Note, pulp wood plantation, quite common in Sumatra though not
elsewhere in the region, is incorporated into the ‘other peatland’ category in graphs b to f. Data source: Miettinen et al.4 and J. Miettinen pers. comm.
Source data are provided as a Source Data file.
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increases the rate of decomposition of organic material, resulting
in high CO2 emissions from drained peatlands5–7. In addition to
CO2, peatlands also emit the powerful greenhouse gases (GHG)
CH4 and N2O8–10. The emissions of these gases are known to be
strongly influenced by land use change and drainage9,11–13.
However, the magnitude of these effects on emissions is currently
poorly quantified14, even though tropical agricultural peatlands
have been highlighted as global hotspots for N2O emissions with
implications for nitrogen management14. One of the most con-
tentious issues in quantifying the environmental impacts of peat
swamp forest conversion has surrounded the period during and
immediately after conversion. High CO2 emissions in the first five
years after conversion of peat swamps to agriculture were first
estimated by Hooijer et al.15 on the basis of subsidence mea-
surements. However, there have been no corresponding direct
measurements of GHG emissions with which to compare these
findings. The lack of data is partly due to the challenge of
accessing sufficiently large areas of plantation at different stages
of conversion to enable robust evaluation of the impacts of
conversion. Existing studies either focus on single sites or make
comparisons between forests and mature oil palm plantations
without accounting for the conversion process, or focus on only
one or two of these GHGs,11,12,16 making it difficult to calculate
overall emissions factors from oil palm plantations. However,
rapid loss of labile carbon following conversion implies that
in situ emissions during the early phase of conversion will be
higher than from mature plantations17.

This uncertainty has global consequences; a recent EU report
on the social and environmental impacts of palm oil concluded:
“the total GHG emissions from palm oil-related land use
change is unknown”18. This highlights that data on GHGs
from across the life cycle of oil palm plantations is urgently
needed to underpin policy that supports the development of
sustainable land management practices. The objective of this
study is to calculate the global warming potential (GWP;
i.e., expressed as CO2 eq.) resulting from conversion of peat
swamp forest to oil palm plantation via direct measurement of
GHG fluxes at a tropical peatland in North Selangor state,
Malaysia.

The North Selangor peat swamp forest contains large areas of
forest cover and high water tables19. However, it is encroached
by oil palm plantations at various stages of development19,20. To
determine the impact of conversion from peat swamp forest to
oil palm plantation with regards to GHG emissions, we selected
four stages of conversion that were present in the study areas:
secondary forest, recently drained but uncleared forest, cleared
and recently planted young oil palm plantation, and mature
oil palm plantation (see Methods for a detailed site description).
Previous work at the site shows that conversion strongly
impacts soil physical properties, carbon storage and quality,
with depletion of labile carbon acting as a strong control of both
CO2 and CH4 production under anaerobic conditions17,19.
Within each of these four conversion stages, we determine CO2,
CH4 and N2O21 fluxes, as well as water table position, soil
physio-chemical and vegetation properties, as they are impor-
tant controls of GHG emissions. We show large emissions of
CO2 and N2O following conversion while CH4 fluxes were
reduced. CO2 emission fluxes are greatest during the drainage
stage while N2O emissions were greatest in young oil palm
plantations. The impact of conversion from forest to oil palm
when combining CO2, CH4 and N2O fluxes increased the GWP,
from 1435 tCO2 eq ha−1 at forest sites to 2744 tCO2 eq ha−1

over the 30-year life span of an oil palm plantation. This equates
to an emission factor between 70–117 t CO2 eq ha−1 yr−1 (95%
confidence interval, CI).

Results and discussion
Greenhouse gas emissions following land use conversion. The
greatest CO2 fluxes occurred during the drainage and young oil
palm stages, before declining in the mature oil palm stage (F3,41=
5.27, P < 0.05, SED= 12.22 t ha−1 yr−1, mixed model; Fig. 2a).
Observed emissions from the mature plantations are comparable
with heterotrophic fluxes previously reported from mature oil
palm plantations of a similar age to those investigated in our
study6,7. Emissions were ca. 50% greater from young oil palm than
mature oil palm, supporting the notion of a peak in heterotrophic
CO2 fluxes15,22 during the initial phases of peat swamp forest
conversion to oil palm plantation. The high CO2 fluxes during the
drainage stage are probably due to a combination of root
respiration23,24 from trees and high heterotrophic respiration in
response to increased oxygen availability after drainage24,25. This
increase in emissions was evident even when water tables were
<40 cm26 below the ground surface as recommended by the
roundtable for sustainable oil palm (RSPO) guidelines27. This
suggests that current guidance regarding water tables is not suf-
ficient to mitigate high CO2 fluxes.

CH4 fluxes were high at the forest site; the median was 76 kg
CH4 ha−1 yr−1, above the regional average of 38–56 kg CH4 ha−1

yr−1 8,13 and declined sharply with drainage and conversion to
either close to zero or negative fluxes representing a weak sink of
CH4 (F3,97= 3.82, P < 0.05, SED= 11.59 tCO2 eq ha−1 yr−1,
mixed model; Fig. 2b, c). Our data clearly show reduced CH4

fluxes following conversion, in line with findings across SE Asia
where drainage-based agriculture reduce emissions by approxi-
mately one third13. Importantly, although there was a sharp drop
in CH4 emissions initially, these subsequently increased in mature
plantations, possibly as a result of increased waterlogging at sites
due to subsidence and compaction of the peat15,19,28.

Emissions of N2O were lowest at the forest sites; the median
was 41 kg N2O ha−1 yr−1. The fluxes are in the range of emissions
reported from drained forests in Central Kalimantan (31 kg N2O
ha−1 yr−1)16. However, N2O emissions during the conversion
phase (drainage and initial plantation) were much higher; with
medians of 54 kg N2O ha−1 yr−1, and 291 kg N2O ha−1 yr−1, for
drained forest and young oil palm plantations, respectively
(F3,134= 17.2, P < 0.01, SED= 53.87 tCO2 eq ha−1 yr−1, mixed
model; Fig. 2c, Table 2). Increased N2O emissions in agricultural
areas are commonly observed in studies on rangelands, sago,
mixed agriculture and oil palm on drained peat12,16,29. Impor-
tantly, maximum emissions occurred in young oil palm planta-
tions where fluxes were several orders of magnitude higher than
N2O fluxes reported from both mature oil palm and peatlands
used for other types of agriculture e.g. acacia plantations (3.4 and
2.6 kg N2O ha−1 yr−1, respectively)12,16. The likely explanation for
these high fluxes is a combination of (i) application of inorganic N
fertilisers and planting of leguminous cover crops in plantations to
increase soil N levels, (ii) large supplies of labile C, a requirement
of denitrifier heterotrophs8,12,16, from the decaying organic
material derived from the recently cleared forest, and (iii) weakly
reducing redox conditions induced by lowered water tables9

(Table 1).

Global warming potential following land use conversion. Over
a 30-year period (i.e., the life span of an oil palm plantation
accounting for the different stages of conversion), the annual CO2

loss from oil palm plantations was 53.0 t CO2 ha−1 yr−1

(39.2–73.0 t CO2 ha−1 yr−1 95% CI; Table 2). This estimate is
significantly lower than the 95 t CO2 ha−1 yr−1 annual average
cited by the EPA22 and the International Council on Clean
Transportation (ICCT)30, both of which are based largely on
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Hooijer et al.15. However our CO2 emission result is in line with
the 60 t CO2 ha−1 yr−1 prescribed by the RSPO26 for sites with
water tables of −40 to −60 cm (as derived from30–32).

Combining all emissions factors (i.e., for CO2, CH4 and N2O),
GWP was greatest under the two early stages of conversion from
peat swamp forest to oil palm plantation (Fig. 3), largely due to

the high CO2 emissions from the drained sites and the high N2O
emissions from the young oil palm sites (Fig. 2a, d and e).
Significantly, our data demonstrate that it is misleading to
compare GHG fluxes between only intact forest and mature oil
palm without considering the contribution of the conversion
process in the emissions factor.

100
a

b c

d e

100

1000

100

10

1

0.1

0.01

100

10

1

C
O

2 
t h

a–1
 y

ea
r–1

C
H

4 
kg

 h
a–1

 y
ea

r–1

1000

Conversion class

100

10

1

N
2O

 k
g 

ha
–1

 y
ea

r–1

C
H

4 
t C

O
2-

eq
 h

a–1
 y

ea
r–1

10

Fo
re

st 
Rs

Dra
ine

d 
Rs

Dra
ine

d 
Rh

Yo
un

g 
oil

 p
alm

M
at

ur
e 

oil
 p

alm

Fo
re

st 
Rh

Dra
ine

d

Yo
un

g 
oil

 p
alm

M
at

ur
e 

oil
 p

alm

Fo
re

st

Dra
ine

d

Yo
un

g 
oil

 p
alm

M
at

ur
e 

oil
 p

alm

Fo
re

st

1000

Conversion class

100

10

0.1

1

N
2O

 t 
C

O
2-

eq
 h

a–1
 y

ea
r–1

Dra
ine

d

Yo
un

g 
oil

 p
alm

M
at

ur
e 

oil
 p

alm

Fo
re

st

Dra
ine

d

Yo
un

g 
oil

 p
alm

M
at

ur
e 

oil
 p

alm

Fo
re

st

Fig. 2 Greenhouse gas emissions across different land conversion stages. a CO2, b and c CH4, and d and e N2O fluxes from the four class conversion
stages expresses as mass fluxes of each individual gas and as CO2 equivalents (i.e., after accounting for the global warming potential of each of the three
gases). At forest and drained sites both heterotrophic respiration (Rh) and overall soil respiration (Rs); at the oil palm sites only Rh was measured. Mean
and SEM are shown, n= 5. Note that a negative CH4 flux data point at the drained class is not shown as a dot point in panel b and c due to the log scale.
Source data are provided as a Source Data file.
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To evaluate fully the net impact of forest conversion to oil palm
agriculture on peatland GHG emissions, we compared the GWP,
in CO2 eq, for forest and oil palm plantation over 30 years
(Table 2). On this basis the conversion from forest to oil palm
resulted in nearly doubling the GWP, from 1435 tCO2 eq ha−1 at
forest sites to 2744 tCO2 eq ha−1 over the 30-year life span of
an oil palm plantation. The annual emissions factor for oil
palm plantations, accounting for all the GHGs and the different
rates of emissions over the different phases of conversion, was
90 tCO2 eq ha−1 yr−1 (70–117 tCO2 eq ha−1 yr−1 95% CI).

Current emissions factors for oil palm grown on drained peat
from the Intergovernmental Panel for Climate Change (IPCC)
and US Environment Protection Agency are 40 and 95 tCO2

eq ha−1 yr−1, respectively, but those estimates only consider CO2.
Our data show it is important to include CH4 and N2O fluxes

into calculations of emission factors as excluding these results in a
serious underestimation at some conversion stages. Higher CH4

and N2O emissions following conversion of subtropical peatlands
to agricultural land has been shown to increase the GWP
substantially28,29,33. However, at 5.3 tCO2 eq ha−1 yr−1, the GWP

Table 1 Vegetation and soil properties under different land uses in North Selangor, Malaysia. Mean and standard error of the
mean (in brackets) are shown.

Variable Forest Drained Young oil palm Mature oil palm

Basal area (m2 ha−1) 21.58 (3.99) 14.47 (2.08) nd nd
Tree density (stems ha−1) 286.66 (22.05) 281.46 (40.16) 143 (n/a) 143 (n/a)
Soil moisture (%) 82.3 (28.0) 46.3 (22.0) 33.3 (9.0) 56.6 (21.0)
Soil temp (°C) 26.1 (0.52) 26.9 (0.71) 29.8 (0.49) 27.8 (0.85)
Bulk density (g cm−3) 0.10 (0.008) 0.07 (0.006) 0.12 (0.010) 0.12 (0.018)
Organic matter (%) 95.1 (0.99) 92.5 (0.83) 91.1 (1.69) 81.3 (3.91)
pH 3.6 (0.06) 3.7 (0.06) 3.7 (0.08) 3.9 (0.08)
Water table (cm) 6 (22) −14 (23) −39 (15) −21 (18)
Peat depth (cm) 189 (130) 329 (43) 247 (43) 115 (112)

nd: no data
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Fig. 3 Emissions factors for each of the four land conversion stages expressed as tCO2 eq ha−1 yr−1 accounting for emissions of CO2, CH4 and N2O (i.e.,
accounting for the Global Warming Potential of each of these three gases). Mean and ±SEM are shown, SED= 62.99, n= 5. Source data are provided as a
Source Data file.

Table 2 Emissions factors (EF) expressed as CO2 equivalents for the three GHG gases and the calculated combined global
warming potential (GWP) expressed both per year (annual EF) and over the 30 year plantation production cycle (total EF).

CO2 not adjusted to
Rh t ha−1 yr−1

CO2 adjusted to
Rh t ha−1 yr−1

CH4 tCO2

eq ha−1 yr−1
N2O tCO2

eq ha−1 yr−1
GWP tCO2

eq ha−1 yr−1

Forest 50.90 (4.82)a 18.73 (6.12) 14.78 (6.65) 13.51 (6.34) 47.83 (12.61)
Drained 88.49 (12.04)a 56.32 (13.15) 0.52 (0.23) 55.62 (21.47) 104.86 (22.88)
Young oil palm 81.37 (9.54) 81.37 (9.54) 2.68 (1.20) 182.42 (78.03) 258.53 (75.43)
Mature oil palm 54.41 (13.25) 54.41 (13.25) 7.67 (3.43) 34.34 (15.78) 97.36 (21.68)

SED 13.15 12.22 11.59 53.87 62.99

Annual EFb tCO2 eq ha−1 yr−1 53.1 (39.2–71.0) 90 (69.9–117.5)
Total EFb tCO2 eq ha−1 1591 (1177–2130) 2743.8 (2100–3524)

Mean, standard error of the mean (in brackets) and SEDs are reported for the different conversion stages. Mean and 95% CI (in brackets) are reported for the annual and total emissions factors.
aSoil emissions represent total emissions from both heterotrophic and autotrophic sources
bBased on the Monte Carlo simulations
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reported from temperate peatland pasture systems was consider-
ably lower compared to the rates we show for conversion to oil
palm plantation29. The estimates provided here represent an
important improvement over previous emission factors. In
particular, these findings account for CH4 and N2O and include
an uncertainty estimate and account for the process of
conversion. The uncertainty associated with these estimates
should be noted and the impact of temporal (e.g., diurnal cycles
in fluxes, seasonality, plantation age) and spatial (e.g., site
management and pedology) variability need to be better under-
stood if this uncertainty is to be further reduced.

Regional greenhouse gas emissions estimates. Using our emis-
sion factor estimation, annual GHG emissions from conversion of
peat swamp forest to oil palm plantations in SE Asia are calcu-
lated to be 0.39 Gt CO2 eq yr−1 (based on the area of peat swamp
forest currently converted to oil palm plantation, 3.1 × 106 ha,4

and the emission factor of 90 t CO2eq ha−1 y−1 reported above).
As the IPCC annual global estimate for GHG emissions in 2010
was 49 GtCO2 eq yr−1(ref. 34), we estimate that conversion of
peat swamp forest contributes ca. 0.57% (0.44–0.74%, 95% CI) of
the global total GHG emissions each year. At the regional scale,
with combined annual GHG emissions from Indonesia and
Malaysia of 2.66 GtCO2 eq yr−135, the emissions from conversion
to oil palm makes a substantial contribution at ca. 21.3%
(16.6–27.9%, 95% CI) to the total regional GHG emissions. Note
that this calculation does not account for the varying ages of oil
palm plantation in the area and is based on the assumption that
all oil palm plantation is established by conversion from forest.
However, based on an average 25–30 year cropping cycle for oil
palm, and existing land cover data, it is likely the majority of
peatland oil palm plantations are first generation4.

Currently GHG emissions from tropical peatlands that have been
drained and converted for plantation agriculture (e.g. oil palm) are
not considered in GHG emissions budgets by the UN Framework
Convention on Climate Change (UNFCCC)36. However, the overall
sustainability of biofuel derived from palm oil, especially for
companies actively engaged in peatland conversion, is still under
consideration by bodies such as the EU Transport Agency30 and the
US Environmental Protection Agency37,38. Similarly, a vote by
members of the European Parliament in April 2018 prohibited sales
of biofuels made from vegetable oils by 2020 in order to meet its
2020 climate goals. The grounds for the ban was that palm oil
derived biofuels do not align with EU directives which state that
biofuels should not contribute to global deforestation37. These
policy initiatives clearly illustrate the requirement for appropriate
emission factors.

In conclusion, we have demonstrated that the climate impact of
converting tropical peatland to oil palm plantation is greatest
during the early stages of conversion. This shows that simple
comparison between forest and mature oil palm plantations do
not appropriately account for the emissions throughout the oil
palm plantation cycle. In the current study, when emissions of the
three main GHGs are accounted for over a 30-year plantation
cycle, the emission factor was nearly doubled (expressed in CO2

eq yr−1) compared to the emissions factor based solely on CO2

fluxes (Table 2) although considerable uncertainties remain due
to temporal and spatial variability. Continued deforestation and
conversion of peat swamp forest to oil palm plantation will result
in release of globally significant amounts of GHGs to the
atmosphere over the next decades.

Methods
Study area. This study was carried out in North Selangor Peat Swamp Forest
(NSPSF), Malaysia, an ombrotrophic peatlands, which contains large areas of forest
cover and high water tables19. The area of NSPSF is 73,600 ha, the site is split into

two separate management areas: The northern part form the 50,100 ha Sungai
Karang Forest Reserve while the southern parts is in the 23,500 ha Raja Musa
Forest Reserve39. The area has a history as state land which resulted in logging and
deforestation of part of the peatland. Logging was much reduced after 1990 when
the area was designated as a reserve40. The logging history of the area means that
the condition of the forest varies considerably. Furthermore, the forest is traversed
by a network of ca 500 km of narrow canals that previously were used for trans-
porting timber. Some areas of the reserve still has good quality dense forest as they
have not been logged for ca. 40 years and these were selected as the forest sites used
for this study41. The forest is largely comprised by the following tree species:
Macaranga pruinosa, Campnospermacoriaceum, Blumeodendron tokbrai, Shorea
platycarpa, Parartocarpus venenosus, Ixora grandiflora, Pternandra galeata, Cry-
tostachys sp., and Pandanus atrocarpus42.

The site first became forested during the early Holocene when it was colonised
by mangroves, these were over time replaced by fresh water vegetation and forest
communities. At the base of the peatland are grey marine clays over which peat
deposits has accumulated to up to 5 m depth42. The mean annual rainfall is more
than 2000 mm per year, with a dry period in June, when rainfall is between 76
to 191 mm, the largest amount of rain falls in November when precipitation is 185
to 414 mm43. The mean annual air temperature is 28.5 °C and the humidity is
77.2%44. Although the majority of the reserve remains forested, it is encroached
upon at the periphery by oil palm plantations at both early and mature stages45. As
part of the study we chose four land use types that represent the stages of
conversion from peat swamp forest to oil palm plantation, namely: (1) secondary
‘forest’ – these sites were located in areas with low recent anthropogenic impact,
though the whole forest reserve was selectively logged during the 20th century; (2)
recently ‘drained’ but not cleared forest—at these sites, drainage took place ca.
6 months prior to sampling, drainage ditches were ca. 2 metres deep and
200–300 m apart; (3) drained, cleared and recently planted ‘young oil palm’
plantation which was established ca. six months prior to sampling—at the time of
sampling the oil palms were 0.5 to 1 m tall; and (4) ‘mature oil palm’ first
generation plantations, which were 10–15 years old with most trees between 8 and
12 m in height (see Tonks et al.19 and Table 1 for details).

Field sampling and laboratory analysis. Within each of these four land use types,
five sites were selected. At each site, a 30 by 30 m plot was established, the location
of each plot was determined using random coordinates. Within the plot, three
replicate static head space chambers of known volume (11.5 dm3) and area
(425 cm2) were inserted to 2 cm depth and used to sample CO2, CH4 and N2O21

through a Suba seal; thus there were 60 sampling locations for each sampling event.
At the young and mature oil palm plantations (stages 3 and 4), samples were
collected 3.5 m away from the palm trunk to ensure negligible contribution of
autotrophic respiration to measured surface CO2 fluxes6,7,32. During soil sampling
and chamber installation, observations of ca. 10 cm diameter soil samples collected
at 0–10 cm depth and ca. 5 cm diameter soil samples collected from 40–50 cm
depth from each plot confirmed that there were no oil palm roots at the sampling
locations. This was not possible at the forest sites; instead we applied a 63.2%
contribution of autotrophic respiration to correct the surface fluxes at the sec-
ondary and drained forest sites24,46. Very similar rates of autotrophic respiration
have been reported from peat swamp forest in SE Asia and the Neotropics24,46. Gas
sampling was repeated three times at the forest, young oil palm and mature oil
palm sites during the 2014 wet season (October-December); repeat sampling was
not possible at the drained sites due to access problems. The overall sampling
programme resulted in 150 independent sampling points across the 20 different
sites. Samples were collected at 0, 2, 6 and 10 min using hypodermic needles and
20 ml syringes (25 G × 1”, TERMO, UK). The air within the chambers was gently
mixed prior to sample extraction using the syringe and needle. Samples were then
injected into pre-evacuated 12 ml glass vials (Exetainers, Labco, UK). All samples
were shipped to the University of Nottingham, UK for gas chromatography
analyses.

Vials were discarded for chromatographic analyses if overpressure was absent
(<5 out of a total of 600 vials). CO2, CH4 and N2O concentrations were determined
using a single injection system with a 1 mL sample loop that passed the gas sample
using N2 as carrier through a non-polar methyl silicone capillary column (CBP1-
W12-100, 0.53 mm I.D., 12 m, 5 mm; Shimadzu UK LTD, Milton Keynes, UK) and
porous polymer packed column (HayeSep Q 80/100). Thermal conductivity
(TCD), flame ionisation (FID) and electron capture (ECD) detectors were used to
measure CO2, CH4 and N2O concentrations, respectively. Flux calculations were
made using the ideal gas law and all samples were checked that gas accumulation in
the head spaces were linear over time.

Drainage and lowered water tables are key features of conversion of peat swamp
forest to oil palm plantation and can affect GHG production strongly5. Therefore,
water table depth was measured at the time of GHG sampling at each field plot
using dip wells. To explore longer term variation in water table depth, monthly
variation was measured over a two-year period using dipwells at two locations in
the secondary forest.

Structural woody vegetation measurements were taken at the field plots. At the
forest and drained sites, diameter at breast height (DBH; calculated via
circumference measured at a height of 140 cm) was calculated for all trees with
DBH > 10 cm. From these data, basal area and stem density per ha were calculated.
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At young oil palm and mature oil palm sites, trunk height of all trees was estimated
using a clinometer and tape measure.

Surface peat samples (10×10×10 cm volume) were collected using a bread knife
at the first sampling event adjacent to the gas sampling locations in each of the field
plots. Samples were placed in plastic bags and shipped to the University of
Nottingham, UK. Prior to analysis, samples were cold stored at 4°C. Surface peat
pH was determined by mixing 5 cm3 of field-wet peat in 12.5 cm3 of distilled water
in centrifuge tubes and leaving on a rotary shaker overnight, before measuring with
a pH 209 benchtop pH metre (Hanna Instruments Ltd.) and combination pH
electrode.

Gravimetric water content was assessed by oven drying the peat samples at
105 °C for 48 h. The peat mass was recorded before and after oven drying and
applied to Eq. (1). Bulk density was determined using the oven dried mass and
known volumes, as in Eq. (2). Organic matter content was quantified using the loss
on ignition method. 5 g samples of oven dried, ball milled peat were weighed into
porcelain crucibles, before being placed in a Carbolite AAF muffle furnace
(Carbolite Ltd.) at 550 °C for 4 h. The weight of ash left after ignition was recorded
and Eq. (3) was used to determine the percentages of organic matter.

θ ¼ Mw �Md

Md
´ 100 ð1Þ

Where θ is the gravimetric water content, dry weight basis (%); Mw is the mass of
wet peat (g); and Md is the mass of oven dry peat (g).

ρbulk ¼
Md

V
ð2Þ

Where ρbulk is the bulk density, dry weight basis (g cm−3); Md is the mass of oven
dry peat (g); and V is the volume of the peat core (cm3).

OM ¼ M1 �M2

M1
´ 100 ð3Þ

Where OM is the organic matter content (%); M1 is the mass of oven-dry peat (g);
and M2 is the mass of ash left after ignition (g).

Data analysis and calculation of emissions factors. Mixed models using residual
maximum likelihood method (REML) were used to test for differences in GHG
fluxes between land uses. Land use type and time were used as fixed effects, ‘plot’
was fitted as a random effect. The spatial subsamples within each site were averaged
at each time point before statistical analysis. GHG flux data were assessed for
normality and subsequently transformed logarithmically. Statistical analysis was
conducted using Genstat (version 15.1.0). We used the means from the measuring
period (November – December 2014) to estimate annual fluxes, calculating GWP
(CO2 equivalents) using equivalent values for CH4 and N2O of 34 and 298,
respectively47. To determine whether variation in the water table affected the
measured fluxes, linear relationships between gas flux and water table position for
each combination of GHG (CO2, CH4, N2O) and land use (forest, drained, young
oil palm, mature oil palm) were tested. There were no significant relationships
between short term site water table fluctuations and any of the three GHGs in line
with findings by Carlson et al.48, hence the mean measured gas fluxes were used to
calculate emissions factors across the year. Note that although measurements were
made during the wet season, water tables range widely between sites and over time
including in the mature oil palm plantations which were flooded at some sampling
time points (Table 1).

To estimate a confidence interval on emissions factors for the converted system
we undertook a monte carlo analysis in which the emission rates for each GHG and
conversion stage were sampled from the appropriate observed log-normal
distribution. To quantify the GHGs emissions over the full oil palm cycle of
30 years the time dependent emission rate was linearly interpolated between the
sampled rates for each conversion stage. For this, we assumed that emission rates
changed from the secondary forest to the drained forest value over a six month
period and then to the young oil palm rate over a further six months. The period
over which emission changes from the young oil palm stage to the more stable
mature oil palm was allowed to vary using a triangular distributed value which
varied from 4 to 6 years after initial conversion with the maximum at 5 years.
While these assumptions simplify the influence of plantation age on emissions,
they are in line with the observed year of the actual (forest drainage and clearance)
conversion process, the account by Hooijer et al.15 of subsidence stabilisation
after ca. 5–6 years of drainage, and the subsequently stable subsidence rates at
4.2 mm yr−1 for the rest of the oil palm plantation life cycle reported for peatlands
in Peninsular Malaysia49. The assumptions of comparable decomposition rates
between ca. 5–6 and 30 years since conversion is supported by the paper by Dariah
et al.7 who found no significant differences in CO2 emissions between 6 and 15 year
old oil palm plantations, and the paper by Hooijer et al.31 which shows consistent
subsidence rates after 6 years whereby subsidence indicates decomposition of peat.
Indeed, Cooper et al.17 suggest rapid decomposition of labile carbon during the
early stage of conversion followed by more gradual decomposition during the
mature phase, supporting the notion of relatively consistent decomposition rates in
the later stage of plantation when most of the labile carbon has already been
metabolised by the microbial community and released to the atmosphere. Based on
these assumptions, we calculated time integrated emissions factors (combining all

three GHGs accounting for their contrasting GWP) for forest, drained, young oil
palm and mature oil palm sites (Table 2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available on request from the authors. The source data underlying Figs. 1–3
are provided as a Source Data file; additional data are in Supplementary Data 1 file.
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