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Abstract. Many nations are challenged by landscape fires. A confident knowledge of the area and distribution of
burning is crucial to monitor these fires and to assess how they might best be reduced. Given the differences that
arise using different detection approaches, and the uncertainties surrounding burned-area estimates, their relative
merits require evaluation. Here we propose, illustrate, and examine one promising approach for Indonesia where
recurring forest and peatland fires have become an international crisis.

Drawing on Sentinel-2 satellite time-series analysis, we present and validate new 2019 burned-area esti-
mates for Indonesia. The corresponding burned-area map is available at https://doi.org/10.5281/zenodo.4551243
(Gaveau et al., 2021a). We show that > 3.11 million hectares (Mha) burned in 2019. This burned-area extent
is double the Landsat-derived official estimate of 1.64 Mha from the Indonesian Ministry of Environment and
Forestry and 50 % more that the MODIS MCD64A1 burned-area estimate of 2.03 Mha. Though we observed
proportionally less peatland burning (31 % vs. 39 % and 40 % for the official and MCD64A1 products, respec-
tively), in absolute terms we still observed a greater area of peatland affected (0.96 Mha) than the official estimate
(0.64 Mha). This new burned-area dataset has greater reliability than these alternatives, attaining a user accu-
racy of 97.9 % (CI: 97.1 %–98.8 %) compared to 95.1 % (CI: 93.5 %–96.7 %) and 76 % (CI: 73.3 %–78.7 %),
respectively. It omits fewer burned areas, particularly smaller- (< 100 ha) to intermediate-sized (100–1000 ha)
burns, attaining a producer accuracy of 75.6 % (CI: 68.3 %–83.0 %) compared to 49.5 % (CI: 42.5 %–56.6 %)
and 53.1 % (CI: 45.8 %–60.5 %), respectively. The frequency–area distribution of the Sentinel-2 burn scars fol-
lows the apparent fractal-like power law or Pareto pattern often reported in other fire studies, suggesting good
detection over several magnitudes of scale. Our relatively accurate estimates have important implications for
carbon-emission calculations from forest and peatland fires in Indonesia.

1 Introduction

Accurate burned-area maps are key to characterising land-
scape fires, clarifying emissions, and identifying the prob-
able causes. Such information is needed to target interven-
tions; to assess policies and practices intended to reduce or
control fires, such as law enforcement and restoration of fire-

prone degraded lands; and to measure progress towards inter-
national climate commitments (Sloan et al., 2021). Here, we
focus on Indonesia where recurring forest and peatland fires
have become an international crisis (Tacconi, 2016). These
concerns arise from the large carbon emissions associated
with these fires and the impact of associated aerosol emis-
sions for human health in the wider region (Van der Werf
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et al., 2008; Marlier et al., 2013). Although fires have oc-
curred locally in Southeast Asia for millennia, they are in-
creasingly frequent in Indonesia’s disturbed forests and de-
forested peatlands (Field et al., 2009; Gaveau et al., 2014).
The causes and motivations of fire use can be complex (Den-
nis et al., 2005), but many are lit to create or maintain agri-
cultural land (Gaveau et al., 2014; Adrianto et al., 2020).
Most fires occur during drier months (July to October), and
the threats are greatly heightened during years of anoma-
lously low rainfall (Sloan et al., 2017; Field et al., 2016).
During 2015, a strong El Niño-induced drought year, fires
burned an estimated 2.6 Mha according to official estimates
(Sipongi, 2020). Although 2015 burning was approximately
half as extensive as that in 1997, the most severe El Niño and
fire season on record (Fanin and Werf, 2017), about 50 %
more peatlands burned (Fanin and Werf, 2017). The 2015
fires emitted between 0.89 and 1.5 billion tonnes of CO2
equivalent (Huijnen et al., 2016; Lohberger et al., 2018; Van
Der Werf et al., 2017), representing about half of Indone-
sia’s greenhouse gas emissions for that year (Gütschow et
al., 2019). In Palangkaraya, the capital city of Central Kali-
mantan Province, daily average particulate matter (PM10)
concentrations often reached 1000 to 3000 µgm−3, amongst
the worst sustained air quality ever recorded worldwide
(Wooster et al., 2018). Over half a million people suffered
respiratory problems in the aftermath, and between 12 000
and 100 000 premature deaths were estimated (Koplitz et
al., 2016; Crippa et al., 2016). Other impacts include loss and
degradation of habitats with high conservation values and the
associated consequences for impacted wildlife (Harrison et
al., 2016).

In response to the catastrophic 2015 fires, the Indonesian
government instituted several ambitious schemes including
fire bans enforced by dedicated command posts (Sloan et
al., 2021) and a national program of peatland restoration
(Carmenta et al., 2021). Despite the investment in these ap-
proaches and measures, and initial success, severe burning
struck Indonesia again in late 2019. While Sloan et al. (2021)
suggest that 2019 fire activity was lower than expected given
the severe drought conditions, the total number of MODIS
active-fire detections in late 2019 on peatlands was still
amongst the greatest recorded since 2001 (Sloan et al., 2021).
However, counts of active-fire detections do not provide esti-
mates of area burned (Tansey et al., 2008), and for 2019 such
estimates remain uncertain.

Those wishing to assess and monitor burned areas have
various approaches to consider. Several global burned-
area products generated using coarse-resolution satellites
(> 250 m) can be applied over Indonesia. These include the
FireCCI41 product derived from Envisat-MERIS (Alonso-
Canas and Chuvieco, 2015), the FireCCI51 and MCD64A1
products derived from Terra And Aqua MODIS (Giglio et
al., 2018; Lizundia-Loiola et al., 2020), the FireCCILT11
product derived from AVHRR (Otón et al., 2021), and the
C3SBA10 product derived from Sentinel-3 (Lizundia-Loiola

et al., 2021). Currently, MCD64A1 (collection 6), based on
MODIS 500 m bands, is considered one of the most ac-
curate global products (Chuvieco et al., 2019), with omis-
sion and commission errors of 40 % and 22 % globally for
the “burned” class (Giglio et al., 2018). This validation is
based on independent globally distributed, visually inter-
preted reference satellite data, however none over Indonesia.
These coarse-resolution datasets generally omit small-scale
fires and, thus, the reported burned area is underestimated
(Ramo et al., 2021). This has motivated research in the use of
medium-resolution satellites (10 to 30 m) such as Sentinel-1
(Lohberger et al., 2018, in Indonesia), Sentinel-2 (Chuvieco
et al., 2018, in sub-Saharan Africa), and the Landsat constel-
lation (Hawbaker et al., 2020, in North America) to produce
more detailed burned-area maps. Lohberger et al. (2018) re-
ported 4.6 Mha burned in 2015 in Indonesia, nearly double
the estimate of 2.6 Mha from the Indonesian Ministry of En-
vironment and Forestry (MOEF), using visual interpretations
of time-series Landsat 8 imagery (Sipongi, 2020).

For the year 2019, MOEF (hereafter “official esti-
mate”) estimated that 1.64 Mha burned (Sipongi, 2020),
while MCD64A1 (collection 6) indicated 2.03 Mha. The
MCD64A1 product omits smaller fires because of the coarse
500 m spatial resolution and thus likely overlooked many lo-
calised events. The Landsat imagery underlying the official
estimates is, while at a finer scale, observed every 16 d at
best (typically much less due to cloud and smoke), meaning
that many burns may remain undetected. Also, smaller-scale
and/or dispersed fire activity may be underestimated, con-
sidering the challenges of their visual interpretation and de-
lineation. Visual interpretation entails a manual delineation
of burn perimeters, which yields accurate results for large
burn mapping at local scales but is time consuming at large
spatial scales, particularly when mapping small fires. A thor-
ough accuracy assessment is also not available for the offi-
cial burned-area products. Given the uncertain errors around
burned-area estimates, and the differences between them, the
accuracy and merits of different mapping approaches over
Indonesia require formal examination.

Here, we present new and validated 2019 burned-area
estimates for Indonesia using a time series of the atmo-
spherically corrected surface reflectance multispectral im-
ages (level 2A product) taken by the Sentinel-2A and B satel-
lites. With higher spatial resolution (20 m) and more frequent
observations (5 d revisit time), the Sentinel-2A and B satel-
lites offer relatively comprehensive and accurate burned-area
mapping (Huang et al., 2016; Ramo et al., 2021). We used
the Google Earth Engine (Gorelick et al., 2017), thus per-
mitting wide application. We also developed an independent
reference dataset to compare the accuracy of our estimate
against the official and MCD64A1 burned-area maps. Given
the lack of objectively distributed ground truthing, we sought
ways to extract reference sites by visually detecting a smoke
plume, burn, or heat source (flaming front or hotspot) from
the archive of original Sentinel-2 images. Finally, we exam-
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ined differences in terms of burn size frequency distributions
among these three burned-area estimates to examine spatial
patterns.

2 Methods

2.1 Summary of methods

A burned area is identified by alteration of vegetation cover
and structure along with deposits of char and ash. We mapped
such areas using a change-detection approach, i.e. by com-
paring Sentinel-2 infrared signals recorded before and after
a burning event (Liu et al., 2020). We analysed a time se-
ries of the normalised burned-area ratio (see Sect. 2.2) to as-
semble two national composite images depicting the spec-
tral condition of vegetation shortly before and shortly after
a disturbance (Fig. 1). These composites represent a con-
venient way to capture the entire burned landscape stored
in just two image files. Although we refer to these images
as “pre- and post-fire composites”, they also capture dam-
age due to other causes, for example a cutting event (e.g.
mechanical conversion agriculture, timber plantation, roads,
population centres, mining, or natural timber harvesting), a
disease impacting the vegetation, strong winds, floods, or
landslides (Gaveau et al., 2021b). After the production of
the pre- and post-fire composites, we used a “random forest”
classification model (see Sect. 2.3) trained on visually iden-
tified pairs of pre- and post-fire pixels to confirm if the spec-
tral changes indicating vegetation damage corresponded to a
burning event. Third, three independent interpreters assem-
bled a reference dataset by visually identifying burns in the
original time-series Sentinel-2 images. Fourth, we assessed
our burned-area map, as well as the official and MCD64A1
burned-area maps, against the reference dataset to gauge the
reliability and accuracy of the three burned-area products. Fi-
nally, we tested whether, and how, the three burned-area es-
timates differed in their tendencies to incorporate burns of
different sizes.

2.2 Pre- and post-fire Sentinel-2 national composite
images of 2019

Here, we describe our automated procedure to create a na-
tional pair of pre- and post-fire composites from 47 220 orig-
inal Sentinel-2 images acquired between 1 November 2018
and 31 December 2019. Prior to creating the composites,
we removed non-valid pixels using the Sentinel-2 imagery
quality flag (this flag provides information about clouds,
cloud shadows, and other non-valid observations) produced
by the ATCOR algorithm and included in the atmospheri-
cally corrected surface reflectance multispectral images of
the Sentinel-2A and B satellite surface reflectance products
(Level 2A product) (Drusch et al., 2012).

A time series of the normalised burned ratio (NBR), given
as (NIR−SWIR)/(NIR+SWIR), represents a convenient

index to detect the approximate day when the vegetation
was damaged. Before damage, vegetated pixels register high
NBR values close to 1 because reflectance in the near-
infrared spectrum (NIR; wavelength= 0.842 µm; Band 8) is
high due to the chlorophyll content of the vegetation (open
circles before a disturbance, in this case a fire, in Fig. 2).
The NBR of damaged vegetation typically declines abruptly
towards 0 (or ≤ 0 for severe damage) because the NIR re-
flectance declines due to chlorophyll and leaf destruction,
while the reflectance of the short-wave-infrared spectrum
(SWIR; wavelength= 1.610 or 2.190 µm; Band 11 or Band
12) increases due to dead or charred material and exposed
ground cover. NBR values ≤ 0 are often apparent for sev-
eral weeks after severe burning or clear-cutting. We anal-
ysed NBR time series for approximately 4.73 billion pixels
(1 pixel= 0.04 ha; Indonesia’s landmass∼ 189 Mha). We de-
scribe the procedure to detect drops in the NBR time series
in the following paragraph.

We detected drops in NBR time series with a moving-
window approach. A moving window scanned NBR values
3 months prior and 1 month after the central day of the win-
dow. The output value of the moving window (blue dots in
Fig. 2) is the difference between average NBR values ob-
served before and after the central day. The NBR average
after the central day included the value at the central day.
The difference between the average NBR values was esti-
mated every 2 d in the time series, skipping the day of year
that was an odd number (day of year equal to 2, 4, 6, 8). Al-
though Sentinel-2 has a temporal resolution of 5 d, the over-
lap between satellite passes may increase the temporal reso-
lution regionally up to 2 d at the Equator. Thus, we estimated
the NBR difference (dNBR) every 2 d instead of 5 d. Taking
this into consideration, our “disturbance” date estimate has a
maximum temporal precision of 2 d in specific regions, but
generally 5 d when satellite passes do not overlap. The day
of the year when dNBR reached a maximum corresponded
to the moment NBR dropped most markedly in each pixel,
flagging a disturbance to the pixel’s vegetation potentially
caused by fire. At this date, we created a pair of pre- and
post-fire pixels by selecting the median red, NIR, and SWIR
spectral values acquired 3 months before and 1 month after
the disturbance. We selected a 1-month window rather than a
3-month window to compute the post-fire image to maximise
our chances to detect recent burns, given that burned areas on
degraded lands and savanna tend to re-green rapidly. We re-
peated this procedure for approximately 4.73 billion pixels to
assemble two national composite images depicting the spec-
tral condition of vegetation shortly before and shortly after
each detected a disturbance (Fig. 1).

2.3 Supervised burned–unburned classification

We used the random forest supervised classification algo-
rithm (Breiman, 2001), available via the Google Earth En-
gine, to determine whether the spectral changes detected by
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Figure 1. The pair of cloud-free pre-and post-fire Sentinel-2 composites shown over six locations in insets A, B, C, D, E, and F (all insets
have the same scale). The base Indonesia-wide imagery is the post-fire composite. Imagery displayed in false colours (RGB: short-wave
infrared, band 11; near infrared, band 8; blue: red, band 4). In this pair of composite images acquired shortly before and after fire, a recently
burned area will readily appear to have transitioned from “green” to dark “brown/red” tones. Areas cleared without burning appear bright
pink. Areas covered with vegetation appear dark to bright green.

Figure 2. A schematic of Sentinel-2 time-series imagery, associated NBR values (open circles), and NBR differences between average NBR
values observed before and after the central day of a 2 d moving window (blue dots). A burned pixel (20m× 20 m) is represented by a red
rectangle on the left. Before fire, the vegetated pixel registers positive NBR values (open circles). The NBR rapidly drops during the fire,
and, for a few weeks, the satellite observations show a negative NBR. The day of the year when the NBR difference observed via the moving
window reaches a maximum corresponds to the moment NBR dropped (red line). This day marks a decline in the pixel’s vegetation, possibly
reflecting a burning event. Over time, the vegetation regenerates (re-greening) and the spectral characteristic of charred vegetation fades.
Re-greening can happen within days in the case of savanna grasslands, or within months in the case of forest fires on peatlands.
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the pre- and post-fore composites corresponded to a burning
event, and subsequently we classify burned areas. Supervised
classifiers require “training data”, that is, exemplary spectral
signatures of “burned” and “unburned” lands in the present
case, to guide the algorithm to reliably classify the target
classes. The spectral signatures (i.e. the reflectance values
in the pre- and post-fire composite images) are the predic-
tive variables of the classification model. The features used
in the random forest are the bands of Sentinel-2 in the pre-
and post-fire composites plus their respective NBR index. We
excluded the bands at 60 m spatial resolution (bands B1, B9,
and B10) since these bands present a low spatial resolution
for the aim of the study. Therefore, we used a total of 22 fea-
tures: the NBR and bands B2, B3, B4, B5, B6, B7, B8, B8A,
B11, and B12 of the pre and post-composites.

We used a 10-fold cross-validation to assess the accuracy
obtained with a set of different parameters in the random for-
est. The splitting “train-test” in the cross-validation was done
only with the training dataset, since the reference dataset
used for the final validation must be completely independent
of the training and model parameterisation. The two parame-
ters that we tuned were the number of trees and the minimum
leaf size. Random forest is an ensemble classifier composed
of several decision trees; the parameter number of trees rep-
resents the number of decision trees in the random forest.
The minimum leaf size represents the minimum number of
samples that result from a splitting node at the decision tree.
We found that a minimum leaf size equal to 1 performed the
best on average, and, thus, we used this value. We selected
a conservative number of trees, 50, to ensure the good per-
formance of the random forest. We did not set any limit to
the maximum nodes in each tree, and the variable to split
in the random forest was set to the square root of the num-
ber of variables, which is the common practice among ma-
chine learning practitioners and the default configuration in
the Google Earth Engine.

The required number of points used to train our super-
vised classification model (here a random forest) depends
on the spectral separability of the classes (in our case two
classes: burned and unburned). The pixels that show a burn
present a singular spectral signature, and, for this reason, it
is necessary to collect a large number of training points. We
collected training points until we were satisfied with the re-
sults of the classification by visually comparing the resulting
burned-area map against the pre- and post-fire composites.
We trained the random forest algorithm using 988 indepen-
dent training pixels (Fig. S1 in the Supplement for locations),
point coordinates labelled as either burned (317 points) or
unburned (671 points). These pixels were selected by visual
interpretation of the pre- and post- fire image composites.
Burned areas show a distinctive dark (low albedo) brown/red
colour in the SWIR–NIR–red composite image when dis-
played as red–green–blue channels (Fig. 1). The training pix-
els were collected across land cover types (Table S1 in the
Supplement for land cover types) to ensure the representa-

tiveness of the training dataset and the satisfactory general-
isation of the classification model across Indonesia. We se-
lected training pixels focused explicitly on medium to high
burn severity, i.e. areas where the distinctive red colour in
the SWIR–NIR–red composite image looked the darkest, in-
dicating that all or most of the vegetation/soil burned. This
aspect of the method minimised “false positives” but may ex-
clude areas with implied low burn severity or low-visibility
impacts, such as understorey fires (below an intact forest
canopy; see e.g. van Nieuwstadt and Sheil, 2005). By priori-
tising confident identification of fires over absolute burned-
area coverage, as well as by duly validating our estimates,
this approach avoids the problems caused by frequent false
positives (Rochmyaningsih, 2020).

We assessed burn severity during algorithm training
based on visual interpretation. RGB composites with bands
11 (SWIR wavelength= 1.610 µm), 8 (NIR wavelength=
0.842 µm), and 4 (red wavelength= 0.665 µm) provide infor-
mation about the severity of the fire; burns with high severity
present a dark (low albedo) red/brown colour (Fig. 1). We
included the histogram of dNBR (NBRpostfire−NBRprefire)
for the 317 training points labelled burned in Fig. S2 to
corroborate that the burned training samples were selected
in areas with medium- to high-severity fires. A total of
81 % (256) of burned training points (317) had dNBR val-
ues (NBRpostfire−NBRprefire) <−0.44, which represents the
threshold for medium- to high-severity burns according to the
proposed classification table of the United States Geological
Survey (USGS).

2.4 Burned-area map validation

The gold standard is to validate the map against a suffi-
ciently large reference dataset developed based on ground
visits to burned and unburned sites sampled objectively and
randomly across the region of interest (Olofsson et al., 2014).
We sought alternative ways to generate the reference dataset
because the sample of GPS locations of burned locations
collected by the Indonesian government was not available.
Given the laborious scale of this validation exercise, we vali-
dated our burned-area estimates for only the seven provinces
prioritised by the Indonesian government for restoration of
fire-prone degraded lands (Kalimantan Barat, Kalimantan
Tengah, Kalimantan Selatan, Papua, Jambi, Riau, and Suma-
tra Selatan). These provinces are also those that typically
burn most extensively. We used visual interpretations of the
original time-series Sentinel-2 imagery acquired every 5 d
over 2019 at 1298 randomly selected sites (one site= 1 pixel
of 20m× 20m) to detect flaming fronts (fire hotspots) and
other signs of burning (smoke and charred vegetation). We
used these reference data to calculate the overall accuracy
(OA), producer accuracy (PA), and user accuracy (UA) with
a 95 % confidence interval, of all three burned-area maps
(i.e. our Sentinel-derived burned-area classification, the of-
ficial Landsat-based burned-area map, and the MCD64A1
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product) following “good practices” for estimating area and
assessing accuracy reported by Olofsson et al. (2014). We
use the term “mapped burned-area” for the area classified
as burned by each burned-area map. We employ the term
“corrected burned-area” for the estimation of the burned area
based on the validation of a given burned-area map against
the reference dataset, following the practices in Olofsson et
al. (2014). For instance, a high omission rate in the burned
class of a given burned-area estimate would potentially lead
to a lower mapped area than a corrected area for that esti-
mate, while a high commission rate would potentially lead to
a higher mapped area than the corrected area. The corrected
area represents an estimation of the actual burned area for the
year 2019 computed for each of the three datasets separately.
The accuracy of the burned-area map and the sample size of
the reference dataset play a role in the confidence interval of
the corrected area estimate. Lower map accuracy and smaller
sample size mean wider confidence intervals.

2.4.1 Reference site sampling design

Good practices for estimating area and assessing accuracy, as
reported in Olofsson et al. (2014), assume a simple random
sampling or a stratified random sampling in the generation of
the reference dataset. In our study, we employed a stratified-
random sampling approach to ensure an acceptable sample
of burned reference sites. Our stratified approach was neces-
sary given that the burned class was rare over the study area:
the area of seven provinces of interest is 87.6 Mha and the
combined area detected as burned by all three datasets repre-
sented only 3.1 % of this area.

For the generation of the 1298 reference sites (see Table S4
for associated land cover types 1 year before fire), we ran-
domly sampled (i) 419 sites across from the areas classified
burned by the three datasets (red area in Fig. 3a; Table S2),
and (ii) 879 sites in areas classified as unburned by all three
datasets hereafter denoted U (grey area in Fig. 3a). This sam-
ple size is deemed sufficient and comparable to other map
assessments at a larger scale (Stehman et al., 2003; Olofsson
et al., 2014).

This initial sample of 1298 total sites presents a short-
coming for direct pair-wise comparisons between the ref-
erence dataset and each of the three burned-area maps in-
dividually. Specifically, sampling densities in the reference
dataset were greater in areas classified burned by the three
datasets (red area in Fig. 3a) compared to the area deemed
unburned by all three datasets, hereafter denoted U (grey
area in Fig. 3a). Consequently, for the validation of a given
burned-area dataset, its total number of unburned reference
sites would be over-sampled upon defining unburned refer-
ence sites with reference to U as well as areas classified
as burned uniquely by one of the other two maps (cyan
areas in Fig. 3b–d, hereafter denoted as U′). Such over-
sampling of reference sites in the realm of U′ would vio-
late the stratified-sampling approach described in Olofsson

et al. (2014) and would lead to an erroneous accuracy assess-
ment. To achieve a balanced stratified sampling of reference
sites across burned and unburned areas of each dataset, we
generated three subsamples from the initial 1298 reference
sites (red areas in Fig. 3e–g) and used these subsamples to
validate each dataset. These three subsamples were gener-
ated by randomly excluding reference sites from the realm
of U′ in Fig. 3b–d until the density of reference sites in U′

equalled the density of the larger unburned area U. For in-
stance, for the validation of the official burned-area map, the
density of reference sites in U was 10.36 sites Mha−1, and
the extent of U′ was 1.551 Mha, such that the number of ref-
erence sites to retain in U′ for this validation was given as
1.551Mha× 10.36sitesMha−1

= 16 sites. The calculations
of the number of sites removed from each subsample are il-
lustrated in Table S3. The final, adjusted, stratified subsam-
ples of reference sites used for validation are given in Table 1.

2.4.2 Interpretation of the burned-area reference
dataset

We developed a series of scripts in the Google Earth En-
gine to streamline the visual interpretation of the reference
sites. Specifically, we adapted a script written by Olofsson et
al. (2014) to rapidly scan the time series of original Sentinel-
2 images in visible and infrared bands and thus visually de-
tect a smoke plume, a burn, or a heat source (flaming front)
and determine whether and when in 2019 a reference site
burned. The script enabled the interpreter to interactively
track the evolution of NBR values and patterns over the 2019
time series of 5 d images. Reference sites were investigated
wherever a marked drop in the NBR time series was detected,
indicating a disturbance in the vegetation. For reference sites
where a disturbed area was observed, we subsequently re-
viewed the last few images before the drop in NBR and the
first few images after the drop. Interpreters looked for three
distinct signs of burning in these images to confirm them
as burned: (i) smoke plumes; (ii) flaming fronts – that is, a
line of moving fire where the combustion is primarily flam-
ing; and (iii) rapid changes in colour from green to dark red,
characteristic of a transition to charred vegetation (Fig. 4).
If rapid changes in colour were observed over the reference
site, with at least one direct feature (smoke or flame) in its
vicinity, this indicated a fresh burn, and the reference site
was declared to be burned. If rapid changes in colour from
green to dark red were observed without smoke or flame, the
reference site was also declared to be burned. If no change in
colour was observed, with at least one direct feature (smoke
or flame) in its vicinity, the reference site was declared to be
unburned. If none of these three features were observed, the
reference site was declared to be unburned.

Three interpreters independently reviewed the time series
of original Sentinel-2 images and associated NBR trends
for all reference sites (N = 1298) (see Fig. S3 for a fre-
quency distribution of burn sizes of the Sentinel-2 burned-
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Figure 3. Representation of the adjusted stratified-sampling design for the validation of three burned-area datasets (A, B, and C) against
reference sites (dots). Panel (a) shows the stratified random sampling of reference sites (black points) over the combined burned area. Note
that the density of samples is higher in the combined burned area than the unburned area. Panels (b–d) show, in cyan, the area U′, being
classified as unburned in a given dataset i but classified as burned in at least one other datasets 6= i. For a given validation of A, B, and C,
the sample points in the corresponding area U′ (b–d) were randomly excluded until the sampling density in the area U′ equalled that of the
larger unburned area U (area in grey). Panels (e–g) show the three final adjusted, stratified subsamples of reference points derived from the
initial sample of 1298 reference points. Note that the relative areas and number of sites per class in Fig. 3 do not correspond to the actual
datasets being evaluated.

area map, for select spatially coincident burned reference
sites). To reduce uncertainties associated with the interpre-
tation of the imagery, the results of the three interpreters
were compared to each other. If all three interpreters recorded
the same interpretation and timing of a burning event for

a given reference site, their interpretations were retained. If
one or more interpreters disagreed, all interpreters reviewed
the data and resolved discrepancies by consensus. In some
cases, it was difficult to reconcile disagreements because of
poor image quality or because of uncertain spectral patterns.
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Table 1. Adjusted, stratified subsamples of reference sites to validate burned-area estimates.

Burned-area estimate Reference sites Total reference sites

In areas classified In areas classified as
as burned unburned (U and U′)

Sentinel-2 (this study) 888 280 1168
MODIS MCD64A1 891 242 1133
Landsat 8 (official) 895 182 1077

Figure 4. Two snapshots recording the pre-fire (left panel) and post-fire (right panel) original Sentinel-2 images acquired shortly before
(13 September 2019) and shortly after (8 October 2019) fire for two reference sites (red squares). Imagery displayed in RGB: SWIR, NIR,
and red. Sentinel-2 provides two SWIR bands. Band 12= 2.190 µm is more suitable than Band 11= 1.610 µm to detect the intense heat from
flaming fronts. On these image pairs, one can see flaming fronts travelling towards the reference sites (red dot) from the north in the pre-fire
images (left) and sharp changes in colour from green to dark red characteristic of charred remains with continuing flaming in the post-fire
images (right). Layout built using © Google Earth Engine.

Therefore, if possible, interpreters also explored other satel-
lite images (e.g. Landsat) to detect the presence of fire and
resolve disagreements for a given reference site. The sites
in which the three interpreters disagreed were ultimately ex-
cluded (70 sites) from the reference dataset. For these ex-

cluded sites, disagreement typically resulted from uncertain-
ties over the boundary of burned or unburned areas, or be-
cause the imagery was not clear enough. The sample size of
reference points explored here, N = 1298, excludes the dis-
carded points of disagreement in question.
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We created a second script to generate snapshot images
(see examples in Fig. 4) depicting infrared spectral condi-
tions, shortly before and shortly after a fire, as well as the cor-
responding image dates. Interpreters recorded and geotagged
a snapshot of before and after fire conditions at every refer-
ence site (for which a burned area was detected) to enable
third-party reviewers to check the consistency and validity of
interpretations on a site-by-site basis (see Data availability).

2.4.3 Burn size comparisons

We tested whether, and how, the three burned-area estimates
differed in their tendencies to incorporate burns of larger or
smaller sizes. Specifically, we compared the frequency dis-
tributions of burned areas (or “scars”) amongst the three es-
timates to test for similarity and qualify any distinguishing
differences on the part of our Sentinel-based estimate. Differ-
ences amongst burn-scar size frequency distributions imply
that a given burned-area estimate is inclusive of burn scars
of a given size, regardless of absolute differences to the to-
tal burned area between the estimates. Inter-estimate com-
parisons of burn-scar size frequency are effectively a test
of whether each estimate captures the same realms of to-
tal fire activity. Significant inter-estimate differences imply
greater or lesser inclusion of a given realm of fire activity
– e.g. small-scale agricultural burning, plantation fires, ex-
treme wildfires – thus indicating bias (or lack thereof) with-
out defining such realms explicitly.

For all three estimates, we employed the Kruskal–Wallis
H test of differences with respect to the “location” of
frequency distributions along a continuum of burn sizes.
Given significant inter-estimate differences according to this
three-way test, we tested for two-way differences in the
shape and location of the burn size frequency distribution
(Kolmogorov–Smirnov test), as well as two-way differences
in medians (Mann–Whitney U test), between our Sentinel es-
timate and either the official or MODIS estimate individually.
Testing for similarity over increasingly large scar size cohorts
clarified the degree to which significant inter-estimate differ-
ences were attributable to the inclusion or omission of a given
cohort.

We excluded burns < 6.25 ha because this is the minimum
observable burn size of the Landsat 8 official estimates due to
the challenging nature of visual interpretations at such scales.
We note that the minimum size of the MODIS data is 25 ha;
hence for comparison with the MCD64A1 product we used a
25 ha threshold. In relation to Sentinel and MODIS estimates,
for which burned areas were originally mapped as arrays of
pixels, we defined a burn to be any array of pixels contigu-
ous across cardinal directions but not diagonals to render the
resultant burned-area map conservative with respect to patch
size (Fig. S4). For the official estimate, burns are manually
delineated via visual interpretation by interpreters from the
government of Indonesia. All burns are spatially and tempo-

rally discrete, such that burns of a given estimate that overlap
spatially but not temporally are considered separate.

3 Results

3.1 Increased burned-area estimates

Our Indonesia-wide burned-area estimate, based on the clas-
sification of the pair of pre- and post-fire Sentinel-2 compos-
ites, is larger than the official estimates as well as the MODIS
MCD64A1 to a lesser degree. We estimate 3.11 Mha burned
in 2019 across Indonesia, of which 31 % was on peat (Fig. 5).
The extent of peatlands was defined using a national dataset
from the Ministry of Agriculture (Ritung et al., 2011). In con-
trast, official burned-area estimates, based on visual interpre-
tation of Landsat 8 imagery, report only about half as much
burned area, at 1.64 Mha, of which 39 % was on peat. Our es-
timates too are larger than the MODIS MCD64A1 product,
which reports 2.04 Mha burned in 2019, or two-thirds of our
estimate, with 40 % on peat. The larger burning extent and
proportionally lesser extent of peatland burning according to
our estimates suggest that our estimates are particularly more
inclusive of burning across mineral soils.

In the seven provinces for which we assessed accuracy,
our Sentinel-2 estimates and the official Landsat 8 esti-
mates both report excellent user accuracies (UAs) for the
burned class, at 97.9 % (CI: 97.1 %–98.8 %) and 95.1 % (CI:
93.5 %–96.7 %), respectively, indicating a mere 2.9 %–4.9 %
commission-error rate (Tables 2 and S5). The producer accu-
racies (PAs) are comparatively lower for both datasets, but
notably less so for our estimates, at 75.6 % (CI: 68.3 %–
83.0 %) and 49.5 % (CI: 42.5 %–56.6 %) for our estimate
and the official dataset, respectively. In other words, for
any burned area in our reference dataset, there is a 75.6 %
chance that it will be correctly mapped as burned by our esti-
mate, compared to only 49.5 % for the official estimate. This
is in keeping with the tendency of the Sentinel-2 estimate
to capture more smaller and intermediate-size burns. The
MCD64A1 data had a much lower UA for the burned class,
at 76.0 % (CI: 73.3 %–78.7 %), as well as a much lower PA
for the burned class, at 53.1 % (CI: 45.8 %–60.5 %), qualify-
ing it as the least reliable and accurate of the three estimates
notwithstanding comparable high overall accuracy (Table 2).

All three burned-area maps underestimate the true burned-
area extent, as per their respective PA figures, but our
Sentinel-based map has the smallest shortfall and main-
tained user accuracy. The corrected burned area of the seven
provinces is higher than the mapped area for all three burned-
area maps. Again, however, our map area most closely
approximates its corresponding corrected burned area (Ta-
ble 2). Whereas our Sentinel-based mapped burned area in-
dicates that 1.84 Mha burned in the seven provinces (or 59 %
of our total national estimated burned area), the corrected
burned area is 2.38 Mha (CI: 2.14–2.61 Mha) (Table 2), for
a discrepancy of 0.54 Mha. In contrast, the official esti-
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Figure 5. The 2019 burned areas (red) for Indonesia (grey area) derived using a time series of the atmospherically corrected surface re-
flectance multispectral images (level 2A product) taken by the Sentinel-2A and B satellites. The spatial resolution of this map is 20m×20 m,
and the minimum mapping unit is 6.25 ha. The officially recognised peatland extent is shown with the darkest shade of grey. A provincial
breakdown of burned areas according to our map estimates and those of the official and the MCD64A1 products is given in Fig. S5.

Table 2. Accuracy assessment of each of the three burned-area maps performed in seven Indonesian provinces (87.60 Mha) targeted for
peatland restoration. The accuracy metrics were estimated with an initial total of 1298 points randomly distributed using stratified sampling.
The reported metrics are (1) the overall accuracy (OA), the user accuracy (UA), and the producer accuracy (PA) with their 95 % confidence
intervals and (2) the mapped burned area and the corrected burned area with their 95 % confidence intervals.

Sentinel Official MCD64A1

OA (%) 99.3 (99.1, 99.6) 98.1 (97.8, 98.5) 98.4 (98.1, 98.8)

Burned 97.9 (97.1, 98.8) 95.1 (93.5, 96.7) 76.0 (73.3, 78.7)
UA (%) Unburned 99.3 (99.1, 99.6) 98.6 (98.2, 99.0) 98.8 (98.5, 99.2)

Burned 75.6 (68.3, 83.0) 49.5 (42.5, 56.6) 53.1 (45.8, 60.5)
PA (%) Unburned 99.9 (99.9, 99.9) 99.9 (99.9, 99.9) 99.6 (99.6, 99.7)

Mapped burned area (Mha) 1.84 1.19 1.58
Corrected burned area (Mha) 2.38 (2.14, 2.61) 2.29 (1.96, 2.63) 2.27 (1.94, 2.59)
Difference (Mha) 0.54 1.1 0.69

mate indicates 1.19 Mha burned in the seven provinces (73 %
of its corresponding total), and a corrected burned area of
2.29 Mha (CI: 1.96–2.63 Mha), for a 1.1 Mha discrepancy.
Likewise, the MCD64A1 dataset mapped 1.58 Mha burned
in the seven provinces and has a corrected burned area of
2.27 Mha (CI: 1.94–2.59 Mha), for a 0.69 Mha discrepancy.
Although we cannot extrapolate a corrected burned area
across Indonesia, we are confident that more than 3.11 Mha
burned in 2019.

3.2 Burn size comparison

The Sentinel, official, and MCD64A1 estimates captured
significantly distinct realms of fire activity, as represented
by relative burn size frequencies (Fig. S6). The three es-
timates differ from one another most notably for small
burns; however, they are statistically indistinguishable for
burns > 5000 ha indicative of extreme fire activity (Table 3).

In other words, all three estimates capture very large burns
(> 5000 ha) equally well, and distinctions amongst the es-
timates concentrate amongst small (< 100 ha), intermediate
(100–1000 ha), and larger burns (1000–5000 ha), in decreas-
ing order of degree as indicated by the magnitude of the test
statistics in Table 3.

Inclusivity of smaller and intermediate burned areas is the
primary source of difference among estimates. Compared to
official or MCD64A1 estimates, the Sentinel estimate has a
significantly greater relative frequency of small burned ar-
eas (< 100 ha), especially amongst the smallest of these (Ta-
ble 4). This is indicative of a better detection of small fires
presumably characterised by small-scale agriculture fires and
similar small-scale controlled burning. The Sentinel esti-
mate similarly has a greater relative frequency of interme-
diately sized burns (100–1000 ha), but less acutely so, with
inter-estimate differences being more moderate for the offi-
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Table 3. Tests statistics with respect to three-way differences in
burned-area scar size frequency distributions for Sentinel, MODIS,
and official estimates.

Scar size (ha) Kruskal–Wallis H b

> 25 998a

> 100 335a

> 1000 14a

> 5000b 0.61

Significance: a p < 0.001.
Notes: Scar size thresholds in the table denote the
set of scars included in a test. Tests pertain to
whether frequency distributions have equivalent
distribution location, that is, position along a
continuum of scar sizes. Tests thus pertain to
whether the estimates capture distinct realms of
fire activity, assuming similarly shaped frequency
distributions. Higher test statistic values indicate
greater probability that the estimates differ with
respect to distribution location. The three-way
comparisons of the estimates may flag differences
where all three estimates differ or where only two
of the three differ. Significance is not Bonferroni
corrected. b There are 56, 60, and
16 scars > 5000 ha for Sentinel, MCD64A1, and
official estimates, respectively.

cial estimate than the MCD64A1 estimate (Table 4, Figs. 6
and S6). For burns > 1000 ha, the Sentinel estimate differs
only relative to the official estimate (Table 3), seemingly
due to the latter’s underestimation of large and very large
scars (Fig. 6). Note for instance the increasingly large di-
vergence between the cumulative burned-area curves for the
Sentinel-2 and the official estimates in Fig. 6 for burn ar-
eas > 1000 ha. For very large burns (> 5000 ha), two-way
comparisons in Table 4 again report no significant statistical
differences in burn-scar detection rates between the Sentinel
and alternative estimates. However, given the small sample
of patches > 5000 ha, it is noteworthy that the Sentinel es-
timate captures more very large scars compared to official
estimates (n= 56 vs. n= 16) and avoids critical omissions
made by both official and MCD64A1 estimates for extremely
large burns (> 15 000 ha) on peatlands around Berbak Na-
tional Park in Jambi Province, Sumatra (Fig. 7).

In summary, the greater overall burned-area estimate of
our Sentinel data compared to the official and MCD64A1 al-
ternatives reflects differences in the inclusion of smaller and
intermediately sized scars. The sum of all Sentinel burned
areas that are individually . 860 ha equals the entirety of the
official burned-area estimate (Fig. 6). The Sentinel-2 data ex-
hibit a size–frequency pattern that approximates a near scale-
free power law (Fig. 6).

4 Code availability

The code for generating the Sentinel-2 pre-
and post-fire composites can be found at
https://doi.org/10.5281/zenodo.5646758 (Salim et al.,
2021).

Figure 6. Cumulative national total burned area vs. burned-scar
area, for Sentinel-2, Landsat 8 (official), and MODIS MCD64A1
burned-area estimates. Note the logarithmic axis. For a given seg-
ment of the x axis between scar sizes X1 and X2, a difference in
the slopes for any two estimates is indicative of inter-estimate dif-
ferences in terms of inclusivity of scars between X1 and X2.

5 Data availability

All the data including pre- and post-fire composites, all
three burned-area products, and reference points with
screenshots can be visualised online at this applica-
tion portal: https://thetreemap.users.earthengine.app/view/
burn-area-validation-simplified (last access: 5 November
2021, Salim, 2021).

The Sentinel-based burned-area map and refer-
ence dataset are freely available for download at
https://doi.org/10.5281/zenodo.4551243 (Gaveau et
al., 2021a).

The dataset 2019_burnedarea_indonesia.shp contains the
2019 burned-area estimates that we developed for Indone-
sia using 20m× 20m time-series Sentinel-2 imagery. The
reference dataset Reference_dataset.shp contains 1298 refer-
ence points that we assembled and used to validate all three
burned-area products described in this study. Each reference
point includes the attribute REFERENCE to describe the val-
ues obtained by visual interpretation: either NO unburned
or YES burned. Each reference point has three attributes,
C_SENTINEL, C_OFFICIAL, and C_MCD64A1, to de-
scribe the values of the classification of each burned-area
product: either NO unburned or YES burned. Finally, each
reference point has three additional attributes SENTINEL,
OFFICIAL, and MCD64A1 to describe which burned-area
product this reference point validates. The values are either 0
(not validate) or 1 (validate).

The MODIS MCD64A1 dataset was obtained
at https://developers.google.com/earth-engine/
datasets/catalog/MODIS_006_MCD64A1 (last ac-
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Table 4. Test statistics with respect to two-way differences in burned-area scar size frequency distributions, with respect to distribution shape
and situation (Test I) or situation alone (Test II), for Sentinel estimates compared to either MCD64A1 or official estimates.

Scar size (ha) Sentinel vs. MCD64A1 Sentinel vs. official

I. Kolmogorov–Smirnov II. Mann–Whitney U I. Kolmogorov–Smirnov II. Mann–Whitney U
Z score Z score Z score Z score
(most extreme difference (most extreme difference
(positive/negative))g (positive/negative))g

> 6.25 N/A 31.8a (+0.32) −70.6a

> 25 14.7a (+0.24/− 0.15) −20.1b 13.2a (+0.18) −28.6b

> 100 7.9a (+0.23) −16.6b 1.6d (+0.04/− 0.04) −0.57
> 1000 0.76 (+0.06/− 0.03) −0.79 1.5e (+0.01/− 0.12) −3.1c

> 5000f 0.72 (+0.14/− 0.08) −0.77 0.70 (+0.13/− 0.20) 0.10

Significance: a p < 0.0001. b p < 0.001. c p < 0.01. d p = 0.014. e p < 0.05.
Notes: scar size thresholds denote the cohort of scars included in a test. Test I and Test II both pertain to whether the Sentinel estimates capture distinct
realms (scar size cohorts) of fire activity compared to the other two estimates. Test I pertains to whether the scar size frequency distribution of the Sentinel
estimate has the same shape and distribution location as either the MODIS or official estimate. Test II is the same but with respect to distribution location
only. Distribution location refers to the situation of a frequency distribution along a continuum of scar sizes. Higher test statistics indicate greater probability
that the estimates differ significantly with respect to distribution shape and/or location. Reported statistical significance is without Bonferroni corrections. f

There are 56, 60, and 16 scars > 5000 ha for Sentinel, MODIS, and official estimates, respectively. g The largest positive and negative differences in the
cumulative probability functions of Sentinel vs. MODIS or official scar size estimates are shown. No difference was reported where it was < 0.00 absolutely.

cess: 12 August 2021, Giglio et al., 2015, https:
//doi.org/10.5067/MODIS/MCD64A1.006). The offi-
cial burned-area dataset from the Ministry of Envi-
ronment and Forestry (MOEF, 2021) was obtained at
https://geoportal.menlhk.go.id/webgis/index.php/en/ (last
access: 1 April 2021).

The Sentinel-2 Level 2A data used in this study
are hosted and accessed in the Google Earth En-
gine data catalogue (the link to the data is https:
//developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR, last access: 10 November 2020,
European Union/ESA/Copernicus, 2020). Data ingested and
hosted in Google Earth Engine are always maintained in
their original projection, resolution, and bit depth (Gorelick
et al., 2017, https://doi.org/10.1016/j.rse.2017.06.031).

6 Discussion

We developed a method that generates two national com-
posite Sentinel-2 images depicting vegetation conditions be-
fore and after burning in 2019 (Fig. 1), and then we classi-
fied these paired composites to extract burned areas using a
random forest supervised classification algorithm. We devel-
oped a comprehensive validation protocol to strictly assess
the reliability and accuracy of our product based on visual
interpretation of dense time-series Sentinel-2 original im-
ages, and we also applied this validation to the widely used
global MODIS burned-area product (MCD64A1, collection
6) (Giglio et al., 2018) and to the official burned-area prod-
uct of the Indonesian Ministry of Environment and Forestry
(MOEF) (Sipongi, 2020).

Our estimate is the most reliable and accurate and there-
fore captures more of the 2019 total burned area, confirming

that 20 m Sentinel-2 imagery is better suited to widespread
small-scale burning in Indonesia (Huang et al., 2016), while
it also captures large burn scars relatively thoroughly. The
study finds similar omission and commission errors (47 %
and 24 %) for the burned class of the MCD64A1 prod-
uct as those presented globally (40 % and 22 %) (Giglio et
al., 2018). The underestimation of total burned area accord-
ing to the MCD64A1 product compared with our Sentinel-2
estimate is unsurprising, considering that the MODIS 500 m
pixel resolution struggles to detect smaller fires (Giglio et
al., 2018). Similar conclusions were reached by Ramo et
al. (2021) when comparing the new “Small Fire Dataset” de-
rived using Sentinel-2 and the MCD64A1 product over sub-
Sahara Africa (Chuvieco et al., 2018). More surprising is the
near 2 : 1 ratio by which the Sentinel-2 estimates surpass the
Landsat 8 official estimate. Our examination shows that this
difference reflects differential detection of small (< 100 ha)
to intermediately sized (< 1000 ha) burn scars.

The Sentinel-2 data exhibit a size–frequency pattern that
approximates closer to a near scale-free power law, or Pareto
distribution (Karsai et al., 2020; Falk et al., 2007). These
patterns are typical of large-scale fire studies (Malamud et
al., 1998). Both other methods yield an S-shaped curve with
less area at smaller and larger sizes than captured in Sentinel-
2, indicating likely bias by omission over the entire range
of scales, and are not determined by image resolution alone
(Fig. 6). These results, with different frequency patterns aris-
ing from burns from the same regions in the same period,
also highlight the danger in interpreting apparent burned-area
patterns without careful consideration of the limitations and
biases that arise from the methods used to map them – an is-
sue that may not have always been sufficiently recognised in
past assessments or policy.
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Figure 7. The pair of cloud-free pre- and post-fire Sentinel-2 composites over Berback National Park (black line) and surrounding areas in
Jambi Province (see also Inset A, Fig. 1), revealing large burned areas around Berbak National Park (areas that have transitioned from green
to dark brown/red tones). These large burn scars have been detected by VIIRS hotspots and by the Sentinel-2 burned-area map, but some
have been missed by the official and MCD64A1 datasets.

Although both Sentinel-2 and Landsat 8 observe the in-
frared wavelengths required to detect charred vegetation and
have similar spatial resolutions (20m×20m and 30m×30m,
respectively), Sentinel-2 detects more burns because of the
greater frequency of its coverage (5 vs. 16 d revisit time).
Also, our method makes use of the massive computational
capabilities and automation of the Google Earth Engine, al-
lowing us to analyse more images and thus map more and
smaller burn scars and associated details than even the most
well-equipped team of visual interpreters could.

Despite high reliability that every burn scar detected on the
map was valid (2.9 % commission error rate), our method
suffered a 24.4 % omission error rate (burned areas that re-
mained undetected). These rates reflect necessary tradeoffs
between commission and omission error in a context where
conservative estimates are much preferred for environmental
policy and monitoring. We prioritised a low commission er-
ror rate (i.e. high user accuracy) over absolute burned-area

coverage to address sensitivities (Rochmyaningsih, 2020).
By hedging against commission errors, our approach omitted
hard-to-detect events, including low-intensity burns, such as
those that occur beneath the forest canopy on mineral soils
(van Nieuwstadt and Sheil, 2005) or on savanna grasslands,
which tend to re-green rapidly. While further work is re-
quired to clarify and refine the optimal levels of inclusivity
and reliability, we emphasise that the production of annual
before- and after-fire composite images is relatively straight-
forward for the user community, given the availability of both
the necessary imagery and our Google Earth scripts.

While the accuracy assessment proved that our training
dataset is valid for the classification of Sentinel-2 composites
for the year 2019 in Indonesia, this training dataset might not
achieve equivalent accuracy for other years and regions. The
pre- and post-fire composites might show different spectral
changes under different conditions. For instance, high rain-
fall in 2020 influenced reflectance. Similarly, representative
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training points should be used in other regions. Those adapt-
ing these methods should ensure adequate local training data
and validation.

Doubts may persist concerning confident estimates of
burned areas without extensive and costly ground checks.
Modern high-resolution remote sensing makes such on-the-
ground checks less essential than in the past as burned areas
are readily identified with good accuracy in modern high-
resolution imagery such as that we used for our validation.
The protocol developed here to generate a reference dataset
based on visual inspection of dense (5 d revisit time) infrared
satellite imagery is better suited than ground verifications of
burned and unburned locations because it allows the gener-
ation of extensive randomly distributed, well-characterised
reference sites, a process too time-consuming and costly with
field visits. The identification and quantification of less read-
ily detected burned areas, such as those under a closed forest
canopy, remain a challenge but will require dedicated and
targeted research and would not be solved by ground checks
alone.

Accurate estimates of burned lands, in particular on peat,
are central to addressing concerns about regional air qual-
ity and to ambitious national climate-change atmospheric
carbon reduction commitments heavily reliant on improved
land and fire management (DGCC, 2019). Though we ob-
served proportionally less peatland burning than the alterna-
tive burned-area estimates (31 % vs. 39 % and 40 % for the
official and MCD64A1 products, respectively), we observed
more peatland burning in total (0.96 Mha) than the official es-
timate (0.64 Mha). Given such differences, we anticipate that
our refined burned-area product will enable others to better
estimate carbon emissions from the 2019 fires in Indonesia.
Combined with daily fire hotspots detected using thermal re-
mote sensing, our detailed burned-area map can help identify
ignition sites and estimate fire duration more precisely, and
therefore contribute to forensic analyses of burning across
landholdings (Gaveau et al., 2017) as well as assess policies
and practices intended to reduce or control ignition events
and the scale of fires (Watts et al., 2019).

The Indonesian government has shown some success in re-
ducing fires (Sloan et al., 2021). Apparent reductions to fire
activity would however ideally be qualified using our more
inclusive and accurate burned-area estimates. Further, the In-
donesian government must also develop improved protocols
to quantify the resulting carbon emissions (DGCC, 2019).
Our protocols for creating reliable pre- and post-fire com-
posites are replicable. To further the adoption and reproduc-
tion of our approach, we have published all our protocols,
scripts, applications, burned-area map, reference data, pre-
fire and post-fire Sentinel-2 composite images, and various
other outputs so that anyone may employ and revise them as
they wish (see Data availability).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-5353-2021-supplement.
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